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ABSTRACT. Smart city architectures have to take into account a 
large number of requirements related to the large number of data, 
different sources, the need of reconciliating them in a unique 
model, the identification of relationships, and the enabling of data 
analytics processes. Ingested data, static and realtime, must be 
stored, aggregated and integrated to provide support for data 
analytics, dashboard, making decision, and thus for providing 
services for the city. This means: i) compatibility with multiple 
protocols; ii) handle open and private data; iii) work with 
IOT/sensors/internet of everything; iv) perform predictions,  
behavior analysis and develop decision support systems; v) use a
set of dashboards to make a real-time monitoring of the city; vi)
consider system’s security aspects: robustness, scalability, 
modularity, interoperability, etc. This approach is determinant to:
monitor the city status; connect the different events that occur in 
the smart city; provide support for public administrators, police
department, civil protection, hospitals, etc., to put in action 
city/region strategies and guidelines and obviously directly to the 
citizens. In the paper, we focus on data ingestion and aggregation 
aspects, putting in evidence problems and solutions. The solution
proposed has been developed and applied in the context of the Sii-
Mobility national smart city project on mobility and transport 
integrated with services. Sii-Mobility is grounded on Km4City 
ontology and tools for smart city data aggregation and service 
production.
Keywords: Big Data, smart city data warehouse, Smart City
Architecture/Platform, Smart City Ontology, Decision Support 
Systems.

1. INTRODUCTION
The main technical issues regarding smart city solutions are 
related to: data access, aggregation, reasoning, access and 
delivering services via Smart City APIs. The final aim is serving 
city users in a smarter and efficient manner. Therefore, collected 
and produced data are used to facilitate the creation of smart and 
effective services exploiting city data and information. This 
means to make effective and efficient the data access with their 
semantics, the service delivering, the access to define and control 
dashboards, and the interoperability with any other smart control 
systems active in the city (e.g., mobility, energy, 
telecommunication, fire brigade, security, etc.). In the world, 
municipalities/cities and public administrations are publishing 
huge amount of open data. These data can be coarsely aggregated 
for integration by using solutions such as CKAN [CKAN],
OpenDataSoft [OpenDataSoft]. In some cases, they provide 
access to effective datasets, by using some data integration and 
visualization tools which provide the possibility of creating 
graphic charts, such as distributions or pies, on the basis of the 
values contained in the dataset. In sporadic cases, they also 
provide access to datasets as Linked Data (LD), Linked Open 
Data (LOD), coding data information in terms of RDF triples 
[Barneers et al.]. Very rarely, they can provide data from some 
RDF store endpoints to make SPARQL queries on the data 
exploiting some ontology and other entities [SPARQL], rather
than working only on metadata. The access to RDF stores for data

browsing can be performed by using visual browsers as in [Bellini 
et al., 2014]. In most cases, the effectiveness of data service 
system for Smart City is enabled by the availability of private data 
owned and managed by City Operators addressing specific 
domains: mobility operator, energy providers, business services 
(health, water), telecom operators, tourist operators, universities, 
etc. Real-time data are provided by city operators through some 
APIs as Web Services or REST calls. The APIs for providing data 
to the data aggregator of the city may be compliant with multiple 
standards (such as DATEX II for mobility, intelligent transport 
system for public services, parking; IETF [IETF], ETSI [Lin et al., 
2013] or OneM2M [Swetina et al., 2014] for Internet of Things 
(IOT), Green Button Connect for energy data collection. Thus, 
the developers may collect data that still need to be aggregated to 
make them semantically uniform, referring to the same elements 
in the city, and to establish multiple agreements.

The effective deploy of smart services for city users is very 
frequently viable only by exploiting the semantic integration of 
data as: open data, private data and real-time data coming from 
administrations and different city operators. This implies specific 
processes of reconciliation and the adoption of unifying data 
models and ontologies as in Km4City [Bellini et al., 2014b]. The 
semantic aggregation of data coming from several domains is 
unfeasible without a common ontology, since data are produced 
by different institutions/companies, by using different formats and 
aims, different references to geographical elements, and different 
standards for naming and identification adopted in different 
moments. Thus, datasets are rarely semantically interoperable 
each other since have been produced in different time, by different 
systems, by different people, etc. In addition, they may present 
different licensing models: some of them can be open, while other 
may be private of some city operator that would not be interested 
to lose the ownership by releasing them into an unregulated 
environment, or could simply provide some restrictions (e.g., no 
commercial); see for example the data of car sharing companies 
that are typically private of the company. Well aggregated and re-
conciliated data for the identification of services and locations 
(open and private) can be exploited by reasoning algorithms for 
enabling sophisticated service delivering. For example, by 
providing suggestions and hints on route planning, inter-modality 
routing, parking, hospital finding in the case of emergence, 
finding specific point of interests, setting predictions (for parking 
and traffic) and detecting anomalies for early warning. The data 
values (actual, predicted and/or detected) can be delivered to 
different operators and city users by some personal assistants on 
the basis of the user profile and role. For example, to provide 
information about what is or what would be around a current GPS 
position, the integration of geographic information and services is 
needed; while the integration of geo-localized services and the 
assessment of typical people flows may help the city in improving 
public services and transport, providing suggestions to the city 
users, and planning changes in the city [Castillo et al., 2014].

This paper presents the work performed on defining smart city 
architecture and assessing its performance, as developed in the 
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context of Sii-Mobility smart city project. Sii-Mobility aims to 
provide innovative services for mobility operators and city users 
moving in the city and in the region, to provide solutions for 
sustainable mobility and transport systems. In the literature, there 
are several proposals for smart city architectures, but only few of 
them are really in place with a relevant range of distinct kinds of 
processes, such as addressed in this paper. Most of other projects 
are mainly centered on manage wireless sensors networks, IoT 
such as the FLEXMETER platform [Patti et al., 2016], the 
Barcelona smart City Architecture [Sinaeepourfard et al., 2016] 
and the ALAMANC EU project [Bonino et al., 2015]. In Sii-
Mobility, specific smart algorithms for data aggregation, personal 
assistance; solutions for dynamically shaping restricted traffic 
zones; production of personalized suggestions to allow the city 
users movements, aiming at improving sustainable mobility, etc.
have been developed. These requirements necessitated a deep 
analysis of the state of the art proposals, to identify and then 
develop a solution allowing performing reasoning and deduction 
on city data collected from city operators, as open data and private 
data, as static and real-time data, as multiple domain data for 
producing suggestions and stimulus to city users [SIIMOB-DE1-
1]. In this context, the main goals of an innovative and suitable 
architecture have been: (i) the data ingestion and aggregation 
services to integrate different kinds of data creating a real 
knowledge base for the city (a sort of expert system with 
inference capability), (ii) the computational capabilities and 
process management in the backend and in the front-end, (iii) the 
formalization of the Smart City API by which all the web and 
mobile Apps, and dashboards may have access to the smart city 
knowledge and services [Badii et al., 2017]. The work presented 
in this paper has been performed in the context of the Sii-Mobility 
smart city project on mobility and transport aspects and integrated 
with city services in general (http://www.sii-mobility.org ). Sii-
Mobility project includes 24 industrial partners from industry and 
research, and it has been partially founded by the Italian Ministry 
of Research as a special national program on Smart City, MIUR 
SCN. Sii-Mobility is focused on providing innovative services in 
Tuscany, which is an area of 3.5 million of inhabitants, and it 
involves the Tuscany Region and several municipalities and local 
governs in the area for the experimentations, covering almost all 
the Tuscany region.

The paper is organized as follows: in Section 2 the Sii-Mobility 
Smart City General Architecture is described; Section 3 presents 
the details related to the Smart City Data Ingestion and
Aggregation Layer; in Section 4 the description of the Sii-
Mobility Storage is reported. Section5 contains the Conclusions 
of our work.

2. Overview of Sii-Mobility Smart City
Architecture 
In this section, the key features of the Sii-Mobility architecture for 
smart city management are depicted. The architecture is described 
in Figure 1, putting in evidence the major components/tiers of the 
architecture. In general, the architecture is multitier and provide 
support for big data collection, analytics and intelligence, 
exporting / providing a number of services. In the following sub 
paragraphs, the major components will be better described, while 
details and a deeper discussion is provided for the most 
challenging aspects as discussed in the sequel.
The Ingestion Layer collects, harvests and processes various 
kinds of datasets and data streams characterized by high 
heterogeneity. For this reason, a process of data analysis and 
transformation is needed to make them interoperable and reusable. 

The data are collected in the form of: i) Open Data and come 
from: municipalities, Tuscany region (Observatory of mobility), 
LAMMA weather agency, ARPAT environmental agency, Social 
Media, etc.; ii) Private Data (data with some restriction) coming 
for example from City/Regionals Operators or personal mobile 
phones and regarding: users’ actions, mobility, energy, health, 
cultural heritage, services, tourism, wine and food services, 
education, wellness, environment, civil protection, weather 
forecast, etc.

Moreover, the data mainly comes from: (1) technically as web 
services, sensors, static files, etc., each of which, respecting a set 
of standards (or format types e.g. csv, json, html, xml, shape, 
etc.); (2) different providers: City Operators, Data Brokers, 
citizens, etc.; (3) different classification subareas (Point of 
interest, events, public Transports, traffic flows, etc.); and (4) can 
be both static and dynamic (or real-time); (5) Tv camera 
monitoring the territory; (6) social media crawled for collecting 
post related to the city; (7) city users from the their Apps and also 
from their specific contribution to participate to the city life, and 
with their profile, collecting profile for user kind (citizens, 
commuter, tourist, student, etc.); (8) IOT, internet of things 
sensors that may be provided by the operators as well as from the 
city users, etc.

The datasets are collected, improved in quality and successively 
aggregated and saved in the Sii-Mobility storage by using 
processes implemented as specific codes (as in the case of 
streams) or ETL. The latter mainly realized exploiting the Pentaho 
Kettle tool, for which a new module connecting Phoenix has been 
developed.

As a result, the Ingestion Layer elaborates data to save them into 
the central storage of the smart city architecture. Please note that,
typically in a smart city a large number of entities described in 
with a number of attribute and/or producing data are present. So 
that, the best model for putting them in relationship is reticular to 
model the high number of relationships among entities. An 
example is the street graph. In addition, a relevant number of 
entities produce data over time. For example, real time data such 
as: traffic sensors, IOT devices, fuel prices, parking status, etc. 
The latter kind of data, are forming the historical data on which 
the data analytics and strategies are mainly performed. Thus, due 
to the large amount of data arriving in the storage and exploited 
by data analytics processes, a mixt of noSQL solutions has been 
adopted integrating graph database with tabular storages [HBase, 
Phoenix], [Virtuoso]. Thus, due to the complexity of the data 

Figure 1. Sii-Mobility General Architecture.
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flows, their variability, variety, and velocity we can be talk about 
big data architecture for smart city [Badii et al., 2017]. 

The Aggregation and Data Analytics Layer aggregates the data 
thanks to a Km4City multi-domain ontology creating a 
Knowledge Base for the city (a sort of expert system with 
inference capability) [Bellini et al., 2014b]. The creation of a 
unified model of relationships among the city entities in a 
common Knowledge Base if fundamental to enable effective data 
analytics and inferential processing related to the context of the 
city. The resulting processes and data are used for supporting 
decisions on the city strategies on the basis of: analysis, 
prediction, anomaly detection, early warning, suggestions, 
recommendations, etc. They can be used for improving the city 
services – e.g., intensifying the cleaning in specific areas, 
changing the schedule of the public transportation, changing the 
shape of the restricted traffic zone, tuning the price of parking for 
user profile and time slot, etc. Thus, the resulting data are made 
accessible on Dashboards, mobile App, notifications, reports, etc. 

Therefore, the Big Data Analytics algorithms are capable to 
manage and produce new knowledge for the different kind of city
users involved, such as citizens, students, commuter, tourists, city 
operators, public administrations, researchers and developers, etc.
For example, the most active data analytics areas are devoted to,
[Badii et al., 2017]:

� data reconciliation on the basis of a unified geographical 
references useful to make queries on the Knowledge Base
along lines, area and for proximity; To this end a number of 
geolocation algorithms can be used, also processing the text 
with NLP approaches and exploiting the street graph into the 
knowledge base for recovering and connecting entities to geo 
locations as street, locality, region, POI, etc. Thus, allowing 
to provide answers to questions such as:  since I am on Bus 
14 now, which is the bus stop at which I can found a very
close milk shop for the baby. 

� User Behaviors analysis is typically performed on the basis 
of data collected from the Apps, TV camera, Wi-Fi access 
points, cellular networks of the telecom operators, 
registration to the hotels, accesses to the museums, usage of 
the public transportation, etc. The resulting elaborations in 
some cases can be clustered for user kind, age, nationality, 
sex, for the different time slot of the day, etc. The most 
appreciated resulting data are the list of most requested 
points of interests, the mostly adopted trajectories, the origin 
destination matrices, etc. [Bellini et al., 2017]

� Predictions: to provide a guess about how much the city 
services would be exploited the future, from the next 
minutes, to hours, weeks, etc. Predictions can be directly 
appreciated and used by city users, decision makers. For 
example predicting: available parking lots in any specific 
area, traffic flows and collapsing area, people flows, triage 
usage of hospitals, incidents in the streets, etc. Thus, 
answering to questions of the city users such as “How many 
available places there will be in the car park Firenze, 
tomorrow at 12:00?”.

� Early warning: detecting anomalies in the city usage and 
behavior may help to identify the inception of unexpected 
events: a water bomb, a pipe broken, etc. Differently from 
the predictions, the identification of anomalies works 
comparing the current trends with respect to the predicted 
values, taking into account contextual data. For example, the 
arrival of a large amount of people in a square with respect to 
the typical values may be due to the organization of special 

events or to a closer disaster that is pushing the people to 
move. Typical data for the early warning detection can be 
obtained from environmental, traffic and people flow, water 
level, acoustic data, social media, etc.

� Routing: starting from the Knowledge Base and contextual 
information it is possible to provide answer to questions:
which is the fastest rout to reach the hospital for the 
ambulance taking into account busses, garbage collection, 
etc., what is the safest route to reach from A to B if I move to 
bike today, what is the most ecological (use of public 
transport, bike, on foot, etc.) route to get to Piazza Signoria 
passing by a baker?. Most of the questions cannot be 
answered by commercial or state of the art applications such 
as Google Map, TomTom, Garmin, etc..

� Suggestions and recommendations: Suggestions and 
recommendations can be computed on the basis of: (i) the 
user profile collected from the App and from the social 
media, via OAuth, mutuated registration, or provided by the 
user directly; cumulated from the user behavior analysis; (ii) 
contextual information about the city from the knowledge 
base. For example, for providing advertising, or for 
suggesting alternative POI, etc.

� User Assistant recommendations can be computed on the 
basis of the contextual information and exploiting the user 
behavior and profile, for pushing them in taking a more 
virtuous behavior. For example, for stimulating the city users 
moving by their private cars to take the public transportation, 
or city users not walking enough to take a more healthy 
behavior. To this end, the behavior of the users has to be 
quite precisely monitored, for example, via specific Apps.

� User Engagement requests can be provided to the city users 
adopting the smart city APP to request them providing 
additional information, such as: number of people in a given 
area, to rank a service, to take a picture, to describe the 
queue, etc. The computation of the engagement has to be 
prepared in advance and exploit more or less the same data 
available for providing User Assistant recommendations.
[Badii et al., 2017].

� Ticketing and Booking: it provides to the citizens a set of 
services regarding the purchase and reservation of tickets for 
events such as theatre, stadium, etc. or for public services 
such as the use of buses or tramway, may be providing a full 
travel ticketing with multimodal routing and multiple 
reservation from multiple providers. 

Smart City API (Application Program Interfaces) Layer is 
fundamental to provide both: (i) aggregated data and (ii) services 
to Web and Mobile Applications, and eventually to third party 
city operators. Most of the Smart City APIs are substantially 
presenting a small set of features by using a REST Call service. In 
our case, the API are provided in multiple formats and modalities 
since Sii-Mobility is grounded on Km4City ontology and tools for 
smart city data aggregation and service production consist in the 
possibility of posing requests [Nesi et al., 2016]. The provided 
modalities for Smart City API are:

� SPARQL Query requests directly performed on the RDF 
Store endpoint using the standard SPARQL query protocol 
(based on REST) using GET or POST requests with the 
query parameter containing the SPARQL query, for example 
accessing to the Km4City endpoint;

� SPARQL Query with Inference: requests directly 
performed on the RDF Store endpoint 
http://servicemap.disit.org/WebAppGrafo/sparql, by using 
the SPARQL query protocol (based on REST) using GET or 
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POST requests with the query parameter containing the 
SPARQL query, including inference aspects in the case of 
Virtuoso, or automatically exploiting the inference in the 
case of OWLIM [Bellini et al., 2015b];

� REST: calls are performed by using APIs using full text, 
keywords, service ID (URI) to get info, geolocation, service 
ID (URI) to get closer services, time, etc.;

� Query ID: calls are performed by using a QueryID 
(identification) assigned by some visual tools to form and 
save the queries such as the ServiceMap 
(http://servicemap.disit.org) tool manager, after having 
performed a query by using the graphic user interface, as a 
visual query.

The Application Layer includes a set of applications that can be 
developed thanks to the Smart City APIs Km4City and can be 
divided in:

Development Tools: created to help the developers to find the 
different kind of data, data types, semantic information managed 
in the Sii-Mobility Knowledge Base:

� Service Map (http://servicemap.km4city.org ) allows to 
visually formalize queries and generate calls compliant to 
Km4City Smart City API. These calls are directly sent via 
email to the developer for shortening the production of web 
and mobile applications as described in the sequel. [Badii et 
al., 2016]

� Linked Open Graph (LOG), which is a web application 
(http://log.disit.org ) allowing the users to explore the 
Knowledge Base (KB) to see all the relations among the 
entities that are present in the KB also those hidden from the 
user interface. For example, it is possible to understand how 
the services are connected with the street graph or how to 
access to complete real-time information. The LOG allows to 
visually navigate the relations among the KB entities [Bellini 
et al., 2014].

� SPARQL RDF Store Interface, it allows the developers to 
pose SPARQL queries on the KB and get results.

� Apache Zeppelin which is a web-based notebook that 
enables interactive data analytics with dynamic visualizations 
on the distributed NoSQL storage.

Applications:

� Mobile and web Applications, such as the mobile App 
“Florence what where” (http://www.disit.org/app ). Data 
about changes in the City Users status are collected 
continuously, and the system receives requests from the 
Mobile App periodically. Most of the services of the city are 
provided via the Apps, and on the other hand, the App can be 
used to collect user behavior, engagement, contributions, etc. 

� Dashboards for Control Rooms, a set of dashboards
monitoring high level view data. Typically, they are 
thematically created: mobility and transport, social media, 
energy, environment, health, resilience, etc. The Dashboard 
are designed to stay H24 on the wall of the control room or 
to be used by operators on their desktops. Dashboard Engine 
and Dashboard Builder, is a tool realized to automatize the 
creation of different dashboards. This because different final 
users can be interested in different information or can have 
access only to a limited group of data. Notificator, is a tool 
for generating and management of events with the following 

features: i) association of events generators, event types, 
messages, and recipients; ii) message book to define and 
manage messages; iii) address book to add and manage users 
and their e-mail addresses; iv) logging system for all the 
events monitored, to consult past events details with several 
search filters; v) Graphic User Interface (GUI) to add, edit or 
delete client applications to decide how to manage their 
notifications.

� Participation tools, a set of instruments to inform the city 
users about the city status. The information can substantially 
be provided to the city users via Web Pages on their 
computers via web as well as on specific Totem/Kiosks 
positioned in  public locations (such as: station, bus stops,
etc.). Belong to this type of tools also the (i) Variable 
Message Panels, VMP, which are typically positioned on the 
road entering in the city, or the bus stops, and that may be 
visualized limited information as text and very simple 
graphs; (ii) loudspeakers to inform the city users in the 
metro, in some square, on the Bus/train, (iii) direct call with 
automated calling system and SMS sending. These tools are 
typically exploited to advice the citizens and give them 
suggestion in case of critical events, such as: crowed 
condition, pollution condition, bomb attack, flooding of a 
river, fire, interrupted roads, etc.

� ProcessLoader allows at the non-technical users to upload, 
schedule and monitor processes in the Smart City back 
office. So that for uploading processes into the smart city 
back office, one does not need to know the functioning of the 
smart city complex tools. The processes can be ETL for data 
ingestion, as well as data analytics in multiple languages 
such as: Java, Python, R, C++. The Process Loader directly 
interfaces with the back-office process scheduler that is the 
DISCES (Distributed Smart City Engine Scheduler). The 
uploaded processes can be activated as periodic or 
sporadic/on demand execution. They may have a starting 
time or deadline, the typical duration, etc. 

3. Managing Ingestion and Aggregation
In this section, a more detailed view on data ingestion and 
aggregation aspects and problems is presented. The data ingestion 
in the context of smart city implies the solution of a number of 
problems among them: (i) the management of several different 
data sets and streams, from static to dynamic data, coming from 
different sources, in different formats and with different rates that 
have to be integrated each other, to refer to the same city entities 
and services, (ii) the storage of ingested data to make them 
accessible from a big data storage for data analytics, referral and 
statistics data and just for showing historical trends in the different 

Figure 2. Sii-Mobility Detailed Architecture. 
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contexts.
The resulting detailed architecture is reported in Figure 2 where 
two main blocks are reported for describing the Ingestion and 
Aggregation and the Storage. Their design and functionality will 
be described in details in the next subsections.

3.1 Ingestion and Aggregation 
The data to be ingested into the smart city can be Static or 
Dynamic. Static data are those that change sporadically or with 
low rate, for example one every month. Dynamic data are those 
that change over time, with their specific data rate. 
Due to the large difference among these two aspects they have to 
be managed in different manners. Moreover, a relevant role is 
covered in the city by private data coming from mobility and 
transport such as those created by Intelligent Transportation 
Systems, ITS, for bus management, and solutions for managing 
and controlling parking areas, car and bike sharing, car flow in 
general. Both open and private data may include real time data 
such as the traffic flow measure, railway and train status with 
respect to the arrival, parking areas status, Bluetooth tracking 
systems for monitoring people movements, and TV cameras 
streams for security and flow assessment. 
Both PA sand mobility operators have large difficulties in 
elaborating and aggregating data to provide new services, even if 
they could have a strong relevance in improving the citizens' 
quality of life. Therefore, our cities, even those very active in 
smart city, are not so smart as they could be by exploiting a 
semantically interoperable knowledge base on the available data. 
Static Data are largely created as open data from PA. They may 
be statistic information about the city, locations of point of 
interests (POIs), information about GOV services, etc. This 
information is typically accessible as public files in several 
formats, such as: SHP, KMZ, CVS, ZIP, XML, etc. For the points 
of interest, POI, the information recovered can be related to: 
museums, monuments, theaters, libraries, banks, express couriers, 
police, firefighters, restaurants, pubs, bars, pharmacies, airports, 
schools, universities, sports facilities, hospitals, emergency rooms, 
government offices, hotels and many other categories.
On the other hand, in most cases, the data sets are not 
semantically interoperable. The typical problems start with the 
management of the complexity of the several distinct input data 
sources, in terms of: formats, publishers and licenses (private or 
public data), method adopted to expose/publish the data by the 
data providers, etc. In this context, a relevant problem is the 
quality of data and their needs of reconciliation with the other 
information. This means to adopt a common strategy to make the 
data uniform and referring to the same entities. For example, a 
single street address (‘VIALE SPARTACO LAVAGNINI, 16’) 
can be referred in many different modalities depending on the 
rules used from the database from which they have been extracted 
(‘V.le Spartaco Lavagnini’, ‘v. S. Lavagnini’, etc.). 
Therefore, the process of data ingestion for static data has to 
include activities (see Figure 2) of: 

� Ingestion of the data set file: it may take files from web 
with HTTP/FTP protocols or make calls to web services 
authenticated or not. Each ingested data set has to be stored 
into a storage (implemented in this case with Hbase) to keep 
trace of the eventual changes over time of the static data,
thus performing the versioning of the static data  sets.

� Quality Improvement: it aims to increase the accuracy and 
consistency of the information ingested through a standard 

format identified for each specific field of the datasets. It 
makes and harmonization and reconciliation of the data. For 
example, different data providers use personal modalities or 
adopts different standards to describe a street, a Point of 
Interest, a kind of measure, a GPS coordinate, etc. In this
case, the process of quality improvement, generate a new 
version of improved data directly into the Hbase storage. 
Please note that the quality improvement algorithm may 
radically change the data structure, for example splitting data 
in more fields, enriching record with more information (e.g., 
GPS location, CAP, etc.).

� Triplification (mapping): to produce a set of RDF triples 
compliant with the Km4City Smart City multi-ontology and 
saved in the RDF Storage (more details on the next section). 
The goal in fact is to map the data on a semantic model and 
store this information into an RDF store, to have data 
semantically most significant of the raw data ingested, 
passing through the ingestion and quality improvement 
phases described in section 3. The semantic Ontology used to 
produce the RDF data Knowledge and useful to make the 
sematic aggregation is Km4City [Km4City]. KM4City is a 
multi-ontology adopted in many European and National 
projects, such as Sii-Mobility, Replicate, Resolute [Sii-
Mobility], [Replicate EU project, http://replicate-project.eu/
], [Resolute EU project, www.resolute-eu.org].

Each data has its own ingestion process consisting of a number of 
scheduled ETL transformations (Extract, Transform, and Load) 
managed by the distributed scheduler, DISCES, see Figure 2.
Typically, one for each phase. DISCES: Distributed SCE 
Scheduler consists of a set of distributed instances of running 
agents performing concurrent tasks on multiple servers (Virtual
machines, Nodes). ETL transformations for static data are 
periodically executed to see if the data source has been changed, 
and in the positive case, the ingestion is updated.

On the other hand, most of the data sources descriptors may be 
affected by the above described problems and may also fit in 
model providing a super set of fields (such as: ID, description, 
category, location, street, etc.) which can be automatically 
ingested, and only some of them may be mandatory. For this 
reason, the DataGate tool has been created to allow users to 
provide data in terms of CSV files, automatically perform the 
activities of quality improvement and reconciliation. And since 
not all cases can be solve, the DataGate assists the user with a 
wizard to perform a limited number of activities for solving the 
remaining critical problems.
DataGate is an plugin module of CKAN [CKAN]. It provides 
support for automatically converting datasets of static POI into a 
Km4City compliant format and Knowledge Base. Thus, non-
technical users can: i) upload dataset (churches, museums, hotels, 
hospitals, etc.) following a template in a csv format; ii) see data 
set improved automatically (e.g., extraction of latitude and 
longitude from street and civic numbers, augmenting the location 
with CAP, province, locality, and information taken from Web); 
iii) classify the information uploaded according to the Km4City 
ontology; iv) publish the dataset on the Datagate Portal in 
regularized format for promotion and further reuse; v) generate 
triples for the Knowledge Base. For example, the publishers can 
use the Service Map to see the points of interest in the map.  

Dynamic Data are those that change over time, with their specific 
data rate and typically refer to static data. For example, a sensor is 
classified as static data when it is registered on a given position 
and data type; while it can be generated a lot of real time data 
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without changing the initial registration of its ID and GPS location 
and data type (i.e., temperature). Most of the dynamic data are for 
example: weather forecast, value from environmental aspects, 
measures of pollution, traffic flow, parking status, people flow 
monitoring, events in the city about traffic and ordinances for city 
maintenance, IOT sensors, opening time and day for pharmacies, 
triage status, status of bridges, RTZ status, queue status of the 
GOV services, etc. They are strongly heterogeneous in terms of 
data structure and almost homogenous in referring to some static 
descriptor of the GPS point/entity at which they refer.
Also in this case, the ETL processes can be used and have to be 
scheduled as back office data ingestion process (see Figure 2). 
The scheduling by DISCES of these processes is much more 
computational consuming with respect to the processes for static 
data ingestion. In fact, real time ingestion can be performed with 
rates that are from few seconds to 1-2 times per week, for 
example. The results of the real-time data ingestion could impact 
on both:

� Knowledge base: when the data collected is not related to 
static information. For example, the real-time information 
about the bus line paths may change over time and typically 
refer to new paths (new position of bus stops, etc.) in the city 
and thus the Knowledge base has to be updated to allow city 
users discovering where the bus is passing. 

� Tabular storage: when the data collected are instances of 
entities. For example, the value measured for a sensor at a 
given date and time. Belong to this type of data process also 
those arriving in push as: (i) stream that have to be collected 
with dedicated server processes and stored, such as data 
provided by Apps, data provided by Access Point monitoring 
people flow, etc., (ii) IOT data according to publish subscribe 
protocols, for example, LoraWAN, NGSI, SigFox, MQTT, 
AMQP, COAP, ETSI M2M, OneM2M, etc. 

In first case, the final results are new triples in the KB, while in 
the second case, just new records in the storage. In both cases, the
KB and the tabular storage have to be keep connected since the 
passage from geo located information to data and viceversa are 
mandatory. 
In the above described cases, the adopted ETL tool has been 
Penthao Kettle. 

3.2 The Storage
The data ingested have to be stored into a distributed storage with 
high performance and with fault tolerance capabilities to perform 
the data analytics, the access from dashboard and the access from 
mobile and web app via Smart City API. The data analytic 
processes, also produce additional knowledge and data that have 
in turn to be stored into a safe storage for contributing to the same 
services: dashboard, further analytics, business intelligence, Web 
and mobile Apps, etc. According to the above description, the 
variability, complexity, variety, and volume of these data flows
make the data process of ingestion, aggregation, and data 
analytics as a “Big Data” problem. The variety and variability of 
data can be due to the presence of several different formats, and to 
scarce (or non-existing) interoperability among semantics of the 
single fields and of the several data sets. 
The storage architecture depicted in Figure 2 comprehends: the 
RDF storage hosting the KB composed of the RDF triples and the 
Km4City ontology and a large distributed NoSQL database for all 
the real time tabular data described above.
The RDF store holds mainly static data, and dynamic data that 
change geolocation and geodescription overtime. A RDF stores 

can be:  in-memory, native, non-memory non-native. In-memory 
RDF stores the RDF graph in main memory and hence could not 
be adopted for storing extremely large volumes of data.  The 
native triple stores provide persistent storage with their own 
implementation of the databases. The non-native non-memory 
triples stores are set up to run on third party databases like 
MySQL, PostsgreSQL, Oracle. In the case of Firenze/Tuscany, 
the initial KB with only static data was of about 81 Million triples, 
with growth of 4 million triples per month. Actually, the number 
of triples in the RDF store is in the order of 300 million.  An 
efficient RDF storage should offer both scalability in its data 
management performance and variety in its data storage, 
processing and representation. On the other hand, the KB has to 
be periodically cleaned since the historical data may create a 
reduction in performance [Bellini et al., 2016]. In our solution, the 
RDF Storage of the KB has been implemented by using a 
Virtuoso triple store. Virtuoso, is a native triple store available in 
both open source and commercial licenses. It provides command 
line loaders, a connection API, support for SPARQL and web 
server to perform SPARQL queries and uploading of data over 
HTTP.
The tabular data collecting real time data for referral information 
should be stored into a noSQL database that should be easily 
accessible for Data Analytics. This means to make them 
accessible for drill down via  SQL, for example via Zeppelin or 
other database browser. On the other hand, most of the noSQL 
databases are not SQL compliant and thus languages such as R, 
Java, Python, ETL, etc., have to provide special plugin / extension 
to access them in read and write modalities. Also, having standard 
interface for query data permits the developer to avoid writing 
specific code for retrieving specific data. There are two dominants
per type NoSQL databases: MongoDB (document oriented) and 
HBase (Wide Column Store). Wide column stores introduced by 
google Bigtable stores data in records with dynamic columns. 
Document stores, also called document-oriented database systems, 
are characterized by their schema-free organization of data i.e. 
records do not need to have a uniform structure (the types of the 
values of individual columns can be different for each record).
MongoDB is an open-source document-oriented. It uses JSON, 
allowing for a schema less data model where the only requirement 
is that an id is always present. MongoDB’s horizontal scalability 
is mainly provided using automatic sharding. Conversely 
MongoDB is doe not automatically treat operations as transactions 
and needs closed source solution to expose a standard interface 
SQL oriented. 

Figure 3. Sii-Mobility Detailed Architecture. 
Apache HBase is a non-relational distributed database inspired on 
Google’s BigTable. It has a fault-tolerant way of storing data and 
it is good for storing sparse data. Similarly to Google BigTable, it 
does not support full ACID semantics, although several properties 
are guaranteed.
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In Sii-Mobility Architecture, Apache HBase has been adopted and
deployed on an Apache Hadoop cluster which is configured in 
High Availability mode: 2 masters plus 4 slaves with automatic 
failover. High availability is obtained by distributing meta data 
filesystem information by distributed service i.e. journal nodes 
ensembles. The automatic failover is realized by failure detection 
and active node election mechanism implemented on a distributed 
configuration service i.e. Apache Zookeeper. Apache Zookeeper 
is a highly available service for maintaining small amounts of 
coordination data, notifying clients of changes in that data, and 
monitoring clients for failures. While for the ingestion phase a 
standard HBase deploy fulfill the above requirements, on the other 
hand it’s inefficient when coping with dynamic data.
Moreover, querying data from HBase is implemented by scan 
operations which access all the table HBase does not have indexes 
as the MySQL database. The access pattern is based on row key. 
Orthogonal access patterns require a scan of the whole table 
(server-side), and then the application of additional filters (client-
side). So, it is possible to apply custom filters, client-side, to the 
whole table to analyze a subset of the results but this does not 
reduce server-side IO costs. This mechanism inevitably involves 
high computational costs. To overwhelm this limit, the Distributed 
NoSQL Storage is implemented as Apache HBase with Apache 
Phoenix [Phoenix].
Apache Phoenix, that is an open source and relational database 
layer that is built on top of HBase. Apache Phoenix permits 
applications to store, retrieve or query millions of rows data from 
HBase by Structured Query Language (SQL) near real-time 
[Gupta et al., 2015], [Chrimes et al., 2015]. The advantage of
Phoenix is that it achieves real time responses compiling the 
queries and statements from the client into a series of HBase 
‘intelligent’ scans, filters, and coprocessors and then runs them to 
produce a selected result set. Phoenix allows to return therefore no 
longer the whole table but only the data requested by the client.
Phoenix retrieve time is in the order of milliseconds for smaller 
queries and seconds when using millions of rows.
Phoenix provides JDBC (Java Data Base Connectivity) to JVM 
base clients and PQS for non-JVM base clients. PQS allows the 
non-JVM base clients to use a thin driver for the query plan, 
execution, and processing on an external server process to be 
scaled horizontally, independent of the client process as the query 
server is stateless. The thin driver is based on the Avatica 
framework, which provides an API between the client and the 
server [Avatica]. In Avatica, the server is an HTTP server and the 
client is a simple JDBC driver that allows the client to 
communicate over protocol buffers or JSON. Wire protocols 
provide the flexibility to have clients in non-JVM languages. 
Phoenix is a relational database layer because it offers:

� Transaction support: has full ACID (Atomicity, Consistency, 
Isolation, Durability) semantics with the help of Apache 
Tephra for HBase row-level transactional semantics. Apache 
Tephra provides snapshot isolation of concurrent transactions
by implementing multi-versioned concurrency control. 

� User-defined functions: can be temporary or permanent user-
defined or domain-specific scalar functions. Temporary 
functions are specific to a connection and are not accessible 
in other connections.

� Secondary indexes and views: are created for a large 
frequently accessed table when primary index sorting is not 
possible or hard to apply. Secondary indexes created on 
alternate row keys can allow point lookup, are much faster, 
and do not require a full scan on the table.

Phoenix supports view syntax as happens in standard SQL to 
enable multiple virtual tables to all share the same underlying 
physical HBase table.
To connect the ETL processes with the Distributed NoSQL 
Database, in the case of Dynamic datasets (ETL Direct save in 
Figure 2), it has been made an analysis related to the connections 
between Phoenix and Pentaho, from which emerges that: i) 
Pentaho uses an abstraction layer, called shim, that connects to the 
different Hadoop distributions; ii) shim is a small library that 
intercepts API calls and redirects or handles them, or changes the 
calling parameters. Because those shims are developed 
specifically for Hadoop distributions vendors such as Cloudera, 
Hortonworks and MapR, it was developed a plugin to query 
Phoenix cluster via JDBC with the version of HBase Hadoop 
actually installed. This plugin is implemented as a “user defined 
class” Pentaho object. 
The plugin is a user defined class which essentially reads the 
value and the relative meta data, constructs the query and commits
it on the NoSQL Database. 

4. Experimental results
For the case of Florence/Tuscany area, we are addressing more 
than 800 different data sets sources of the 1550 available. Each 
open data ingestion process has to retrieve information and 
produce records in a noSQL DB for big data, logging all the 
information acquired to trace back and versioning the data 
ingestion. Then, the data have to be completed and improved in 
quality; and finally, data obtained are placed in tabular form, and 
triples RDF linked data form. At regional level, Tuscany Region 
provided a set of open data into the Mobility Integration 
Information Center of the Tuscany Region (MIIC), and provide 
integrated and detailed geographic information reporting each 
single street in Tuscany (about 137,745), and the locations of a 
large part of civic numbers, for a total of 1,432,223 (a wider 
integration could be performed integrating also Google maps and 
yellow/white pages). The solution has been adopted by the 
Florence municipality as the Smart City data aggregation tool. On
which a number of additional projects have been based as: 
REPLICATE, RESOLUTE, etc.
The static data sets produced about 180.000 POIs each of which 
with complex set of data. In addition, a part of them (about 100) 
have been ingested by using DataGate that was not available since 
the beginning. Since its activation 85% of datasets for static data 
are ingested via the DataGate and thus the data ware house does 
not need to the programmed as new ETL process. Among those 
automatically ingested: cultural activities (libraries, churches, 
museums, theaters, monuments, etc.), hospitals, Wi-Fi, 
entertainments (beaches, …), accommodations (B&B, hotels, …), 
etc. in Florence, Venice, Bologna, Sardinia. More complex static 
data still have to pass via dedicated ETL processes such as: 
conversion from street graphs, limited traffic zones, cycling paths, 
etc. The static data are only a minimal part of the smart city 
complexity in terms of data ingestion. 
For the Real Time data, every day about 5900 processes are 
executed. They include data from the ingestion of: bus tracking, 
mobility events, traffic flow sensors, parking, Apps positions and 
requests, Wi-Fi monitoring people flow, fuel station prices, 
weather forecast, environmental and pollution values, IOT 
sensors, first aid triage, public transportation lines updates, 
recharge station, time schedule for pharmacies and other services, 
etc., for about 1.8 Gbyte of new triples per day, 315.000 new data 
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groups per day collected, integrated and linked to the graph 
database for Smart City API, data analytics, and Dashboards.
The typical success rate per day for the scheduled processes for 
data ingestion is close to the 94%. The faults are typically due to 
communication problems, the lack of communication with the 
server providing the data. 

5. CONCLUSIONS
Smart city permits monitoring the city status connecting the 
different events that occur in a city at a given instant of time, 
provide suggestions to Public Administrations or other city 
authorities such as police, civil protection, hospitals, etc., permits 
to put in action city/region strategies and guidelines and obviously 
directly to the citizens. A smart city must cope with many kinds of 
data coming from different contexts which must be aggregated 
and integrated to have a general overview of the city. This means 
ensuring compatibility with multiple protocols from urban 
operators, handling open and private data, with the corresponding 
licenses,  work with IOT/sensors/internet of everything, in cloud, 
perform predictions. Manage and aggregate all the aspects 
involved in a Smart City/Region/State means to solve a Big Data 
problem. This paper presented the work performed on defining 
Sii-Mobiility which is a smart city multi-tier architecture and 
identifying related issues and solutions. Moreover, the paper 
focuses on ingestion and aggregation phase motivating the 
adoption of polyglot persistence, addressing scalable solutions 
based on Hbase and Phoneix and at the same time collecting 
graphs and relationships into a graph DB with semantic acss and 
inference capabilities. This hybrid approach of multiple noSQL 
data store is a good compromise in having sophisticate queries 
formulated by using SPARQL and managing data into large 
scalable noDQL data store. To allow a better integration ETL 
processes have been endowed of tools for interfacing with 
Phoenix and thus with Hbase. Finally some figures have been 
discussed referring to Tuscany area in center of Italy.
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